İçeriğe atla

Zincir kuralı (istatistik)

Vikipedi, özgür ansiklopedi

Olasılık teorisinde, zincir kuralı (genel çarpım kuralı[1] olarak da adlandırılır), yalnızca koşullu olasılıkları kullanarak bir rassal değişkenler kümesinin ortak dağılımının herhangi bir üyesinin hesaplanmasına izin verir. Kural, koşullu olasılıklar açısından bir olasılık dağılımını tanımlayan Bayes ağları çalışmasında kullanışlıdır.

Olaylar için zincir kuralı

[değiştir | kaynağı değiştir]

ve iki rassal olay olmak üzere zincir kuralı,

.
.

İkiden fazla olay

[değiştir | kaynağı değiştir]

ikiden fazla olay olmak üzere,

Tümevarımla şuna ulaşılır:

.

Dört değişkenli zincir kuralı bu koşullu olasılıkları üretir:

Rassal değişkenler için zincir kuralı

[değiştir | kaynağı değiştir]

İkiden fazla rassal değişken

[değiştir | kaynağı değiştir]

iki rassal değişken olmak üzere ortak dağılımı bulmak için koşullu olasılık tanımını uygulanabilir:

Rassal değişkenlerin indekslenimi olmak üzere, ortak dağılımın bu üyesinin değerini bulmak için, koşullu olasılık tanımını uygulanabilir ve şu elde edilir:

Bu süreci her son terimle tekrarlanırsa şu elde edilir:

Dört değişkenli zincir kuralı bu koşullu olasılıkların ürününü üretir:

  1. ^ Schum 1994.