İçeriğe atla

Green fonksiyonları

Vikipedi, özgür ansiklopedi
An animation that shows how Green's functions can be superposed to solve a differential equation subject to an arbitrary source.
Eğer bir nokta kaynağa tabi bir diferansiyel denkleminin çözümü biliniyorsa ve diferansiyel operatör doğrusaldır, daha sonra genel bir kaynak için çözümünü oluşturmak için bunları üst üste koyabiliriz.

Green fonksiyonları, matematikte homojen olmayan diferansiyel denklemlerin, istenen sınır koşulları altında çözülmesinde kullanılan bir yöntemi ve bu yöntemle ilişkili olarak hesaplanan fonksiyonu belirtmekte kullanılır. İlk kez matematikçi George Green tarafından kullanılmıştır.

Tanımı ve kullanımları

[değiştir | kaynağı değiştir]

Bir Green fonksiyonu, G(xs) ve Rn Öklid uzayının bir alt kümesi üzerinde bir lineer differansiyel operatör L = L(x) dağılım'ın hareketi olmak üzere, bir s noktasındaki herhangi bir çözümüdür.

   

 

 

 

 

(1)

   

burada Dirac delta fonksiyonu'dur. Green fonksiyonunun bu özelliği form diferansiyel denklemleri çözmek için yararlanılabilir.

   

 

 

 

 

(2)

   

Eğer L'nin çekirdek'i önemsiz değilse, sonra Green fonksiyonu da benzersiz değildir. Ancak, uygulamada,simetrinin bir bileşimi, sınır koşulları ve/veya diğer harici olarak empoze edilen kriterler benzersiz bir Green fonksiyonunu verecektir. Ayrıca, genel olarak Green fonksiyonlarının dağılımları vardır, mutlaka doğru fonksiyonlardır.

Green fonksiyonları da dalga denklemlerinin çözümünde yararlı bir araçtır, difüzyon denklemlerinin ve kuantum mekaniğindeki, Green fonksiyonu Hamiltonyende anahtar bir kavramdır bununla birlikte durum yoğunluğuylada önemli bağlantıları var, Bir yan not olarak, fizikte kullanılan Green fonksiyonlarının genellikle ters işareti ile tanımlanır; yani,

Bu tanım, Green fonksiyonunun özelliklerini önemli ölçüde değiştirmez.

Bu durumda,Green fonksiyonlarının lineer zamanla değişmeyen sistem teorisindeki impuls cevabı aynıdır.

Homojen olmayan sınır değer problemlerinin çözümü için Green fonksiyonları

[değiştir | kaynağı değiştir]

Matematikte Green fonksiyonunun birincil kullanımı homojen olmayan sınır değer problemlerini çözmektir. Modern kuramsal fizik, Green fonksiyonları da genellikle Feynman diyagramları (ve ifade Green fonksiyonu genellikle herhangi bir korelasyon fonksiyonu) için kullanılır) Yayıcılar olarak kullanılmaktadır.

L, Sturm–Liouville operatorü olmak üzere, şeklinde lineer diferansiyel operatör

ve D, sınır koşulu operatörü olmak üzere

f(x) [0,l] aralığında sürekli fonksiyon olmak üzere. Ayrıca varsayılan problem

düzenli (homojen) problem için, yalnızca önemsiz çözüm var).

Burada tek ve yalnız tek çözümü karşılayan u(x)'dir.

ve bu verilir

buradaki is koşulları sağlayan bir Green fonksiyonu G(x, s) aşağıdadır:

  1. G(x, s) x ve s için süreklidir
  2. için,
  3. için,
  4. Türev "jump":
  5. Simetri: G(x, s) = G(s, x)

Helmholtz denkleminin çözümüne ilişkin Green fonksiyonları şöyledir:

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • S. S. Bayin (2006), Mathematical Methods in Science and Engineering, Wiley, Chapters 18 and 19.
  • Eyges, Leonard, The Classical Electromagnetic Field, Dover Publications, New York, 1972. ISBN 0-486-63947-9. (Chapter 5 contains a very readable account of using Green's functions to solve boundary value problems in electrostatics.)
  • A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 1-58488-297-2
  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9
  • G. B. Folland, Fourier Analysis and Its Applications, Wadsworth and Brooks/Cole Mathematics Series.

Dış bağlantılar

[değiştir | kaynağı değiştir]