Fourier analizi
Bu madde hiçbir kaynak içermemektedir. (Mart 2016) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin) |
Fourier analizi, tabiattaki bütün periyodik fonksiyonları birbirine dik iki farklı periodik fonksiyonun artan frekanslardaki değerlerinin dik toplamı şeklinde gösterilebilir. Fourier, bu toplamı sinüs ve kosinüs fonksiyonlarını kullanarak göstermiştir. Günümüzde Euler bağıntısı kullanılarak sinüs ve kosinüs fonksiyonları yerine kompleks üslü sayılar kullanılmaktadır. Fonksiyonların kompleks üslü sayıların toplamı olarak gösterilmesine Fourier serisi gösterimi denir. Fourier açılımı sayesinde fonksiyonların frekansı kolaylıkla belirlenebilir. Bu yaklaşım farklı periyotlarda girdiye maruz kalan sistemlerin çıktısını ve çıktısının frekansını belirlemekte kolaylık sağlar.
Fourier, söz konusu seri açılımını iki farklı yüzeyi farklı ısılarda olan katı bir cismin sıcaklık dağılımını hesaplamak için kullanmıştır. Bu yaklaşım, yoğun bir işlem çabası gerektirdiğinden ve sonuçta yaklaşık sonuç verdiğinden kullanılmamaktadır. Günümüzde Fourier analizi bilgi ve sinyal işleme ve titreşim analizinde kullanılmaktadır.
Kaynakça
[değiştir | kaynağı değiştir]Ayrıca bakınız
[değiştir | kaynağı değiştir]Matematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz. |