Lineer cebir
Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.
Modern doğrusal cebirin geçmişi 1843 ve 1844 yıllarına dayanır. 1843'te William Rowen Hamilton Kuaterniyonları keşfetti. 1844'te Hermann Grassmann Die lineale Ausdehnungslehre adlı kitabını yayınladı. Arthur Cayley, doğrusal cebirin en temel fikirlerinden birisi olan vektörleri 1857 yılında tanıttı. Ne var ki doğrusal cebir, asıl büyük atılımlarını 20. yüzyılda yapmıştır.
Temelleri
[değiştir | kaynağı değiştir]Doğrusal cebirin temelleri vektörlerin incelenmesinde yatar. Burada sözü edilen vektör, yönü ve büyüklüğü olan bir doğru parçasıdır. Vektörler yöney olarak da bilinir. Vektörler kuvvet gibi fiziksel birimlerin ifade edilmesinde kullanılabilir. Birbirlerine eklenebildikleri gibi sabit bir skalerle de çarpılabilirler. Böylece basit bir reel vektör uzayının oluşumu gösterilebilir.
Modern Doğrusal Cebir, 2 ve 3 boyut sınırlamasını kaldırarak isteğe bağlı veya sonsuz boyutlu uzaylarda işleyebilecek şekilde genişletilmiştir. 2 ve 3 boyutlu uzaylardaki sonuçların büyük bir kısmı n-boyutlu uzaylarda da geçerlidir. N boyutlu bir uzayın görselleştirilmesi zor gibi görünse de aslında bu tür uzaylar temel bilimlerde ve günlük hayatta sık kullanılır. Örneğin 8 ülkenin ulusal gelirini listelediğimiz zaman bu liste 8 boyutlu bir vektörü ifade eder. Bu vektördeki her bir elemanın bir ülkenin ulusal gelirini temsil ettiğini söyleyebiliriz.
Matematikte, soruna doğrusal bir açıdan bakıp, matris cebriyle ifade ettikten sonra onu matris işlemleriyle çözmek, matematikte sık kullanılan uygulamalardan birisidir. Örneğin doğrusal denklem sistemleri (dizge) matris yardımıyla ifade edilip çözülerek denklemin kökleri elde edilebilir.
Vektörler ve Matrisler
[değiştir | kaynağı değiştir]Aşağıda üç boyutlu bir sütun vektörü görülmektedir:
Burada ise 4 boyutlu bir satır vektörünü görmekteyiz:
Son olarak 4 satır ve üç sütundan oluşan bir matris örneğini şöyle gösterebiliriz:
Çalışmanın kapsamı
[değiştir | kaynağı değiştir]Vektör uzayları
[değiştir | kaynağı değiştir]Vektör uzayı, doğrusal cebirin ana yapısıdır. Bir F [[cismi]] üzerinde bir vektör uzayı bir V kümesi ile birlikte iki ikili işlemdir. V’nin ögelerine vektör ve F’nin ögelerine skaler denir.[1] Aşağıdaki listede diyelim ki u, v ve w, V içinde keyfi vektörler ve a ve b, F içinde skalerler olsun.
Aksiyom | Açıklaması |
toplamanın bileşimi | u + (v + w) = (u + v) + w |
toplamanın değişimi | u + v = v + u |
toplamaya göre etkisiz eleman | Burada 0 ∈ V ögesi var, sıfır vektör denir, böylece her v ∈ V için v + 0 = v. |
toplamaya göre ters eleman | her v ∈ V için, burada bir −v ∈ V ögesi var, vnin toplamsal tersi denir, böylece v + (−v) = 0 |
vektör toplamının skaler çarpım üzerinde Dağılma özelliği | a(u + v) = au + av |
sıralı alan toplamının skaler çarpımın üzerinde dağılması | (a + b)v = av + bv |
Alan çarpımı ile skaler çarpımı eşitliği | a(bv) = (ab)v[nb 1] |
skaler çarpımın etkisiz elemanı | 1v = v, burada 1 F içinde çarpmaya göre etkisizdir. |
Doğrusal dönüşümler
[değiştir | kaynağı değiştir]Verilen bir F alanı üzerinde V ve W iki vektör uzayı, bir doğrusal dönüşüm (ayrıca doğrusal gönderme, doğrusal gönderim veya doğrusal işlemci) bir göndermedir.
bu toplam ve skaler çarpım ile uyumlandırılabilir:
u,v ∈ V herhangi iki vektör ve bir skaler a ∈ F için.
toplanabilir herhangi iki vektör u, v ∈ V ve skaler a, b ∈ F için:
Alt uzay, germe ve taban
[değiştir | kaynağı değiştir]Yine diğer cebirsel nesnelerin teorileri ile analog olarak, lineer cebir vektör uzaylarının kendileri vektör alanlarının alt kümeleriyle ilgilenmektedir, bu alt kümeler doğrusal alt uzayı olarak adlandırılır. Örneğin, aralık ve doğrusal bir eşleme bölgesinin hem çekirdek hem de alt uzayları vardır ve bu nedenle sık sık aralık alanı olarak adlandırılır ve boşuzay; bu alt uzayların önemli örnekleridir. Bir alt uzayı oluşturmanın bir diğer önemli yolu da doğrusal kombinasyona almaktır, v1, v2, …, vk vektörlerinin bir kümesi:
burada a1, a2, …, ak skalerlerdir. Vektörlerinin doğrusal tüm bileşimlerinin kümesi v1, v2, …, vk buna germe denir, bunun bir alt uzay formudur.
Tüm sıfır katsayısı ile vektörlerinin herhangi bir sisteminin bir lineer kombinasyonu V sıfır vektörüdür. Bu lineer bir kombinasyonu olarak sıfır vektör ifade etmek için tek yoldur v1, v2, …, vk ise bu vektörler doğrusal bağımsızdır.Verilen bir vektörler kümesinin bu vektörlerinin bir uzay gerimi, eğer herhangi vektör w diğer vektörlerin doğrusal kombinasyonu (ve böylece kümeleri doğrusal bağımsız değildir) ise biz eğer w kümesinden germeyi kaldırırsak aynı kalacaktır. Böylece, doğrusal bağımlı vektörlerin kümesi bir doğrusal bağımsız alt kümesi aynı alt uzayı kapsar anlamında gereksizdir. Bu nedenle, bir vektör uzayı V yi geren vektörlerin lineer bağımsız kümesinin içinden daha çok ilgiliyiz, buna V’nin tabanı deriz. Vektörlerin herhangi kümesi that spans Vnin gerilmiş bir tabanını içerir ve V içindeki vektörlerin herhangi doğrusal bağımsız kümesi bir tabana gerilebilir(yayılabilir).[2] Buradan çıktığı üzere biz seçim aksiyomu olarak kabul edersek, her vektör uzayının bir tabanı vardır;[3] yine de, bu doğal olmayan baz olabilir ve gerçekten de, hatta inşa edilebilir olmayabilir. Örneğin, burada Kesirli üzerinde bir vektör alanı olarak kabul edilen reel sayılar için bir temel var, ama hiçbir açık temel inşa edilmemiştir.
V vektör uzayının herhangi iki tabanı aynı kardinalitesi varsa, buna V’nin boyutu denir. Bir vektör uzayının boyutu vektör uzayı için boyut teoremi ile iyi-tanımlıdır. Eğer V’nin bir tabanı ögelerin sonlu sayısı varsa, V’ye bir sonlu-boyutlu vektör uzayı denir. Eğer V sonlu-boyutlu ve U V’nin bir alt uzayı ise dim U ≤ dim V. Eğer U1 ve U2 V'nin alt uzayı ise
- .[4]
Birçoğu sonlu boyutlu vektör alanlarına önemi sınırlar. Lineer cebir temel bir teoremi aynı boyutun tüm vektör uzaylarının izomorf olduğunu belirtiyor,[5] eş yapının karakterize edilmesi için bir kolay bir yol verir.
Ayrıca bakınız
[değiştir | kaynağı değiştir]- Özvektörler
- Doğrusal regresyon, bir istatistiksel kestirim yöntemi
- Simpleks yöntemi, doğrusal programlama için teknik bir çözüm
- Dönüşüm matrisi
- Elementer matris
Notlar
[değiştir | kaynağı değiştir]- ^ Roman (2005, ch. 1, p. 27)
- ^ Axler (2004), pp. 28–29
- ^ Bir tabanın varlığı, sayılabilir şekilde oluşturulmuş vektör uzayları için ve iyi sıralı vektör uzayları için basittir, ancak genel olarak mantıksal olarak seçim aksiyomuna eşdeğerdir.
- ^ Axler (2204), p. 33
- ^ Axler (2004), p. 55
- ^ Bu aksiyom bir işlemin bileşimi varsayımı değildir, burada sorun içinde iki işlem, skaler çarpım: bv; ve alan çarpımı: ab.
Konuyla ilgili yayınlar
[değiştir | kaynağı değiştir]- Tarih
- Fearnley-Sander, Desmond, "Hermann Grassmann and the Creation of Linear Algebra" ([1]), American Mathematical Monthly 86 (1979), pp. 809–817.
- Grassmann, Hermann, Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert, O. Wigand, Leipzig, 1844.
- tanıtım ders kitapları
- Bretscher, Otto (28 Haziran 2004), Linear Algebra with Applications (3. bas.), Prentice Hall, ISBN 978-0-13-145334-0
- Farin, Gerald; Hansford, Dianne (15 Aralık 2004), Practical Linear Algebra: A Geometry Toolbox, AK Peters, ISBN 978-1-56881-234-2
- Friedberg, Stephen H.; Insel, Arnold J.; Spence, Lawrence E. (11 Kasım 2002), Linear Algebra (4. bas.), Prentice Hall, ISBN 978-0-13-008451-4
- Hefferon, Jim (2008), Linear Algebra, 1 Mart 2014 tarihinde kaynağından arşivlendi, erişim tarihi: 5 Mart 2014
- Anton, Howard (2005), Elementary Linear Algebra (Applications Version) (9. bas.), Wiley International
- Lay, David C. (22 Ağustos 2005), Linear Algebra and Its Applications (3. bas.), Addison Wesley, ISBN 978-0-321-28713-7
- Kolman, Bernard; Hill, David R. (3 Mayıs 2007), Elementary Linear Algebra with Applications (9. bas.), Prentice Hall, ISBN 978-0-13-229654-0
- Leon, Steven J. (2006), Linear Algebra With Applications (7. bas.), Pearson Prentice Hall, ISBN 978-0-13-185785-8
- Poole, David (2010), Linear Algebra: A Modern Introduction (3. bas.), Cengage – Brooks/Cole, ISBN 978-0-538-73545-2
- Ricardo, Henry (2010), A Modern Introduction To Linear Algebra (1. bas.), CRC Press, ISBN 978-1-4398-0040-9
- Sadun, Lorenzo (2008), Applied Linear Algebra: the decoupling principle (2. bas.), AMS, ISBN 978-0-8218-4441-0
- Strang, Gilbert (19 Temmuz 2005), Linear Algebra and Its Applications (4. bas.), Brooks Cole, ISBN 978-0-03-010567-8
- ileri ders kitapları
- Axler, Sheldon (26 Şubat 2004), Linear Algebra Done Right (2. bas.), Springer, ISBN 978-0-387-98258-8
- Bhatia, Rajendra (15 Kasım 1996), Matrix Analysis, Graduate Texts in Mathematics, Springer, ISBN 978-0-387-94846-1
- Demmel, James W. (1 Ağustos 1997), Applied Numerical Linear Algebra, SIAM, ISBN 978-0-89871-389-3
- Dym, Harry (2007), Linear Algebra in Action, AMS, ISBN 978-0-8218-3813-6
- Gantmacher, F.R. (2005), Applications of the Theory of Matrices (1959 bas.), Dover Publications, ISBN 978-0-486-44554-0
- Gantmacher, Felix R. (1990), Matrix Theory Vol. 1 (2. bas.), American Mathematical Society, ISBN 978-0-8218-1376-8
- Gantmacher, Felix R. (2000), Matrix Theory Vol. 2 (2. bas.), American Mathematical Society, ISBN 978-0-8218-2664-5
- Gelfand, I. M. (1989), Lectures on Linear Algebra, Dover Publications, ISBN 978-0-486-66082-0
- Glazman, I. M.; Ljubic, Ju. I. (2006), Finite-Dimensional Linear Analysis, Dover Publications, ISBN 978-0-486-45332-3
- Golan, Johnathan S. (Ocak 2007), The Linear Algebra a Beginning Graduate Student Ought to Know (2. bas.), Springer, ISBN 978-1-4020-5494-5
- Golan, Johnathan S. (Ağustos 1995), Foundations of Linear Algebra, Kluwer, ISBN 0-7923-3614-3
- Golub, Gene H.; Van Loan, Charles F. (15 Ekim 1996), Matrix Computations, Johns Hopkins Studies in Mathematical Sciences (3. bas.), The Johns Hopkins University Press, ISBN 978-0-8018-5414-9
- Greub, Werner H. (16 Ekim 1981), Linear Algebra, Graduate Texts in Mathematics (4. bas.), Springer, ISBN 978-0-8018-5414-9
- Hoffman, Kenneth; Kunze, Ray (25 Nisan 1971), Linear Algebra (2. bas.), Prentice Hall, ISBN 978-0-13-536797-1
- Halmos, Paul R. (20 Ağustos 1993), Finite-Dimensional Vector Spaces, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-90093-3
- Horn, Roger A.; Johnson, Charles R. (23 Şubat 1990), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6
- Horn, Roger A.; Johnson, Charles R. (24 Haziran 1994), Topics in Matrix Analysis, Cambridge University Press, ISBN 978-0-521-46713-1
- Lang, Serge (9 Mart 2004), Linear Algebra, Undergraduate Texts in Mathematics (3. bas.), Springer, ISBN 978-0-387-96412-6
- Marcus, Marvin; Minc, Henryk (2010), A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, ISBN 978-0-486-67102-4
- Meyer, Carl D. (15 Şubat 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, 1 Mart 2001 tarihinde kaynağından arşivlendi, erişim tarihi: 5 Mart 2014
- Mirsky, L. (1990), An Introduction to Linear Algebra, Dover Publications, ISBN 978-0-486-66434-7
- Roman, Steven (22 Mart 2005), Advanced Linear Algebra, Graduate Texts in Mathematics (2. bas.), Springer, ISBN 978-0-387-24766-3
- Shafarevich, I. R. (2012), Linear Algebra and Geometry, Springer, ISBN 978-3-642-30993-9, 9 Kasım 2014 tarihinde kaynağından arşivlendi, erişim tarihi: 5 Mart 2014
- Shilov, Georgi E. (1 Haziran 1977), Linear algebra, Dover Publications, ISBN 978-0-486-63518-7
- Shores, Thomas S. (6 Aralık 2006), Applied Linear Algebra and Matrix Analysis, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-33194-2
- Smith, Larry (28 Mayıs 1998), Linear Algebra, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-98455-1
- Çalışma kılavuzları ve anahatları
- Leduc, Steven A. (1 Mayıs 1996), Linear Algebra (Cliffs Quick Review), Cliffs Notes, ISBN 978-0-8220-5331-6
- Lipschutz, Seymour; Lipson, Marc (6 Aralık 2000), Schaum's Outline of Linear Algebra (3. bas.), McGraw-Hill, ISBN 978-0-07-136200-9
- Lipschutz, Seymour (1 Ocak 1989), 3,000 Solved Problems in Linear Algebra, McGraw–Hill, ISBN 978-0-07-038023-3
- McMahon, David (28 Ekim 2005), Linear Algebra Demystified, McGraw–Hill Professional, ISBN 978-0-07-146579-3
- Zhang, Fuzhen (7 Nisan 2009), Linear Algebra: Challenging Problems for Students, The Johns Hopkins University Press, ISBN 978-0-8018-9125-0
Dış bağlantılar
[değiştir | kaynağı değiştir]- International Linear Algebra Society 3 Ocak 2014 tarihinde Wayback Machine sitesinde arşivlendi.
- MIT Professor Gilbert Strang's Linear Algebra Course Homepage 27 Şubat 2014 tarihinde Wayback Machine sitesinde arşivlendi. : MIT Course Website Kursu
- MIT Linear Algebra Lectures23 Nisan 2006 tarihinde Wayback Machine sitesinde arşivlendi.: MIT OpenCourseWare dan videolar
- Linear Algebra - Foundations to Frontiers EDX tarafından açılacak özgür MOOC
- Linear Algebra Toolkit 16 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi..
- Hazewinkel, Michiel, (Ed.) (2001), "Linear algebra", Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104
- Linear Algebra 23 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi. on MathWorld.
- Linear Algebra tutorial 25 Şubat 2014 tarihinde Wayback Machine sitesinde arşivlendi. interaktif çevrimiçi programları ile.
- Matrix and Linear Algebra Terms8 Temmuz 2015 tarihinde Wayback Machine sitesinde arşivlendi. on Earliest Known Uses of Some of the Words of Mathematics4 Mart 2009 tarihinde Wayback Machine sitesinde arşivlendi.
- Earliest Uses of Symbols for Matrices and Vectors5 Ekim 2018 tarihinde Wayback Machine sitesinde arşivlendi. on Earliest Uses of Various Mathematical Symbols20 Şubat 2016 tarihinde Wayback Machine sitesinde arşivlendi.
- Linear Algebra21 Eylül 2008 tarihinde Wayback Machine sitesinde arşivlendi. Elmer G. Wiens.tarafından vektörler, matrisler, lineer denklem için etkileşimli web sayfaları
- Linear Algebra Solved Problems18 Nisan 2008 tarihinde Wayback Machine sitesinde arşivlendi.: Düşük seviyeden zor seviyeye doğrusal cebir problemlerinin tartışılması için interaktif forumlar(Putnam).
- Linear Algebra for Informatics. José Figueroa-O'Farrill, University of Edinburgh
- Online Notes / Linear Algebra9 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi. Paul Dawkins, Lamar University
- Elementary Linear Algebra textbook with solutions 19 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi.
- Linear Algebra Wiki
- Linear algebra (math 21b) homework and exercises 25 Haziran 2003 tarihinde Wayback Machine sitesinde arşivlendi.
- Textbook and solutions manual 5 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi., Saylor Vakfı.
- An Intuitive Guide to Linear Algebra11 Ekim 2012 tarihinde Wayback Machine sitesinde arşivlendi. on BetterExplained
Çevrimiçi kitaplar
[değiştir | kaynağı değiştir]- Beezer, Rob, A First Course in Linear Algebra 4 Kasım 2013 tarihinde Wayback Machine sitesinde arşivlendi.
- Connell, Edwin H., Elements of Abstract and Linear Algebra 27 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi.
- Hefferon, Jim, Linear Algebra 14 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi.
- Matthews, Keith, Elementary Linear Algebra 19 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi.
- Sharipov, Ruslan, Course of linear algebra and multidimensional geometry9 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi.
- Treil, Sergei, Linear Algebra Done Wrong 31 Ocak 2014 tarihinde Wayback Machine sitesinde arşivlendi.