Cauchy yoğunlaşma testi
Matematikte Cauchy yoğunlaşma testi sonsuz seriler için kullanılan standard bir yakınsaklık testidir. Pozitif, monoton azalan bir f(n) dizisi için
toplamı ancak ve ancak
toplamı yakınsarsa, yakınsar. Dahası, bu durumda,
olur. Geometrik görüş toplama yamuklarla her 'de yaklaşıldığıdır. Başka bir açıklama ise şudur: Sonlu toplamlarla integral arasındaki ilişkin bir analoğu gibi bir analoji terimlerin 'yoğunluğu' ile üstel fonksiyonun yerine konulmasıyla vardır. Bu da aşağıdaki şöyle örneklerle daha çok açık olabilir.
- .
Burada seri kesinlikle a > 1 için yakınsar ve a < 1 için ıraksar. a = 1 olduğunda, yoğunluk dönüşümü ise
serisini verir. Logaritmalar 'sola kayar'. Yani, a = 1 iken, b > 1 için yakınsaklık ve b < 1 için ıraksaklık vardır. b = 1 iken ise, c 'nin değeri devreye girer.
Dış bağlantılar
[değiştir | kaynağı değiştir]- Cauchy yoğunlaşma testinin kanıtı 25 Temmuz 2009 tarihinde Wayback Machine sitesinde arşivlendi.