Doğrusal bağımsızlık
Görünüm
(Doğrusal olarak bağımsız sayfasından yönlendirildi)
Lineer cebirde, bir vektörkümesinin elemanlarının herhangi biri diğerlerinin doğrusal birleşimi olarak yazılabiliyorsa bu küme doğrusal olarak bağımlı tabir edilir; eğer kümedeki vektörlerin hiçbiri bu şekilde yazılamıyorsa, bu küme için doğrusal olarak bağımsız denir. Doğrusal bağımsızlık kavramı, boyut kavramının tanımlanmasında önemli yere sahiptir.[1]
Bir vektör uzayının doğrusal olarak bağımsız taban vektörlerinin sayısına bağlı olarak, bu vektör uzayı sonlu ya da sonsuz boyutlu olarak adlandırılır.
Kaynakça
[değiştir | kaynağı değiştir]- ^ G. E. Shilov, Linear Algebra 9 Eylül 2017 tarihinde Wayback Machine sitesinde arşivlendi. (Trans. R. A. Silverman), Dover Publications, New York, 1977.