Çarpım fonksiyonu
Görünüm
(Çarpma fonksiyon sayfasından yönlendirildi)
Fonksiyon |
---|
Fonksiyon kavramının tarihi |
Tanım ve değer kümelerine göre |
Sınıflarına/özelliklerine göre |
Yapılarına göre |
Genellemelere göre |
Özel fonksiyonların listesi |
Çarpım fonksiyonu, sayılar teorisinde bir f(n) aritmetik fonksiyonudur. Bu fonksiyon, tanım kümesindeki her x ve y çifti için çarpma işlemini koruyan fonksiyondur.[1][2][3]
Bazı örnekler
[değiştir | kaynağı değiştir]- 1(n): sabit fonksiyon, 1(n) tanımlı = 1 (tam çarpım)
- Id(n): birim fonksiyon, Id(n) = n tanımlı (tam çarpım)
- Idk(n): kompleks sayı k için Idk(n) = nk tanımlı (tam çarpım). Özel örnekler;
- Id0(n) = 1(n) ve
- Id1(n) = Id(n).
- ε(n): ε(n) = 1 tanımlı. (tam çarpım). Bazen u(n) olarak yazılır, fakat μ ile karıştırılmamalıdır.
- gcd(n,k): n ve k nın ortak böleni.
- (n): Totient fonksiyon.
- μ(n): Mobius fonksiyon.
- σ0(n) = d(n), n pozitif bölen
- σ1(n) = σ(n) n pozitif bölen
- a(n): isomorfik olmayan n için
- λ(n): liouville fonksiyon, λ(n) = (−1)Ω(n) (tam çarpım).
- γ(n): = (−1)ω(n) tanımlı.
- τ(n): ramanujan tau fonksiyonu.
Özellikler
[değiştir | kaynağı değiştir]Bir çarpma foksiyonu, aritmetiğin temel teoreminin bir sonucu olarak asal sayıların değerine göre tanımlanır. Çarpma fonksiyonlarının bu özelliği hesaplamalarda büyük kolaylık sağlar.[4][5] Aşağıda n = 144 = 24 · 32 için örnekler yer almaktadır;
- d(144) = σ0(144) = σ0(24)σ0(32) = (10 + 20 + 40 + 80 + 160)(10 + 30 + 90) = 5 · 3 = 15,
- σ(144) = σ1(144) = σ1(24)σ1(32) = (11 + 21 + 41 + 81 + 161)(11 + 31 + 91) = 31 · 13 = 403,
- σ*(144) = σ*(24)σ*(32) = (11 + 161)(11 + 91) = 17 · 10 = 170.
Benzer olarak;
- (144)=(24)(32) = 8 · 6 = 48
Bazı konvolüsyonlar
[değiştir | kaynağı değiştir]- μ * 1 = ε
- (μ Idk) * Idk = ε
- * 1 = Id
- d = 1 * 1
- σ = Id * 1 = * d
- σk = Idk * 1
- Id = * 1 = σ * μ
- Idk = σk * μ
Dirichlet serisinde bazı çarpma fonksiyonları
[değiştir | kaynağı değiştir]Ayrıca bakınız
[değiştir | kaynağı değiştir]Kaynakça
[değiştir | kaynağı değiştir]- ^ Introduction to Linear Algebra. 5th ed. Wellesley, MA: Wellesley-Cambridge Press, February 2016. ISBN 9780980232776.
- ^ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — М.: «Мир», 1998. — s. 703 — ISBN 5-03-001793-3.
- ^ G. H. Hardy et E. M. Wright (trad. de l'anglais par F. Sauvageot), Introduction à la théorie des nombres, Vuibert-Springer, 2007, ISBN 978-2-7117-7168-4, s. 320.
- ^ Pete L. Clark, Arithmetical Functions I: Multiplicative Functions 15 Şubat 2017 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce), sur UGA, MATH 4400, 2011.
- ^ Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics 20 Haziran 2017 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce), New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, Erişim tarihi: 8 Ocak 2016.
Konuyla ilgili yayınlar
[değiştir | kaynağı değiştir]- Martinez, Fabio B., et al; Projeto Euclides: Teoria dos Números - um passeio com primos e outros números familiares pelo mundo inteiro, Rio de Janeiro: IMPA, 2010
- Santos, José P. de O.; Coleção Matemática Universitária: Introdução à Teoria dos Números, Rio de Janeiro: IMPA, 2006
- Tom Apostol, Introduction to Analytic Number Theory, (1976) Springer-Verlag, New York. ISBN 0-387-90163-9
- Daboussi, H., & Delange, H. (1982). On multiplicative arithmetical functions whose modulus does not exceed one. Journal of the London Mathematical Society, 2(2), 245-264.
Dış bağlantılar
[değiştir | kaynağı değiştir]- Multiplicative function - Planetmath.org 9 Ocak 2017 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce)
- Mathworld.wolfram.com - Multiplicative function15 Nisan 2019 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce)